Вопрос:

Путь от рекурсии к итерации

recursion computer-science theory iteration

115151 просмотра

19 ответа

4132 Репутация автора

Я много использовал рекурсию в своих многолетних программах для решения простых задач, но я полностью осознаю, что иногда вам нужна итерация из-за проблем с памятью / скоростью.

Итак, когда-то в очень далеком прошлом я попытался выяснить, существует ли какой-либо «шаблон» или учебник, способ преобразования обычного рекурсивного подхода к итерации, и ничего не нашел. Или, по крайней мере, ничего, что я помню, это не помогло бы.

  • Есть ли общие правила?
  • Есть ли «шаблон»?
Автор: Gustavo Carreno Источник Размещён: 01.10.2008 08:38

Ответы (19)


31 плюса

28975 Репутация автора

Стремитесь сделать рекурсивный вызов Tail Recursion (рекурсия, где последним оператором является рекурсивный вызов). Как только вы это сделаете, преобразовать его в итерацию, как правило, довольно просто.

Автор: Chris Shaffer Размещён: 01.10.2008 08:45

7 плюса

36771 Репутация автора

Поиском в Google "Стиль продолжения прохождения". Существует общая процедура для преобразования в хвостовой рекурсивный стиль; Существует также общая процедура преобразования хвостовых рекурсивных функций в циклы.

Автор: Marcin Размещён: 01.10.2008 08:48

3 плюса

10391 Репутация автора

Один шаблон для поиска - это рекурсивный вызов в конце функции (так называемая хвостовая рекурсия). Это может быть легко заменено на некоторое время. Например, функция foo:

void foo(Node* node)
{
    if(node == NULL)
       return;
    // Do something with node...
    foo(node->left);
    foo(node->right);
}

заканчивается звонком в foo. Это можно заменить на:

void foo(Node* node)
{
    while(node != NULL)
    {
        // Do something with node...
        foo(node->left);
        node = node->right;
     }
}

который устраняет второй рекурсивный вызов.

Автор: Andrew Stein Размещён: 01.10.2008 08:48

19 плюса

12749 Репутация автора

Ну, в общем, рекурсию можно имитировать как итерацию, просто используя переменную хранения. Обратите внимание, что рекурсия и итерация обычно эквивалентны; одно почти всегда может быть преобразовано в другое. Хвосто-рекурсивная функция очень легко преобразуется в итеративную. Просто сделайте переменную-аккумулятор локальной и выполняйте итерацию вместо recurse. Вот пример на C ++ (если бы не использование аргумента по умолчанию):

// tail-recursive
int factorial (int n, int acc = 1)
{
  if (n == 1)
    return acc;
  else
    return factorial(n - 1, acc * n);
}

// iterative
int factorial (int n)
{
  int acc = 1;
  for (; n > 1; --n)
    acc *= n;
  return acc;
}

Зная меня, я, вероятно, допустил ошибку в коде, но идея есть.

Автор: coppro Размещён: 01.10.2008 08:53

74 плюса

15118 Репутация автора

Действительно, самый распространенный способ сделать это - сохранить свой собственный стек. Вот рекурсивная функция быстрой сортировки в C:

void quicksort(int* array, int left, int right)
{
    if(left >= right)
        return;

    int index = partition(array, left, right);
    quicksort(array, left, index - 1);
    quicksort(array, index + 1, right);
}

Вот как мы могли бы сделать его итеративным, сохранив свой собственный стек:

void quicksort(int *array, int left, int right)
{
    int stack[1024];
    int i=0;

    stack[i++] = left;
    stack[i++] = right;

    while (i > 0)
    {
        right = stack[--i];
        left = stack[--i];

        if (left >= right)
             continue;

        int index = partition(array, left, right);
        stack[i++] = left;
        stack[i++] = index - 1;
        stack[i++] = index + 1;
        stack[i++] = right;
    }
}

Очевидно, что этот пример не проверяет границы стека ... и на самом деле вы можете определить размер стека на основе наихудшего случая с учетом левого и правого значений. Но ты получил идею.

Автор: bobwienholt Размещён: 01.10.2008 08:55

301 плюса

66713 Репутация автора

Решение

Обычно я заменяю рекурсивный алгоритм итеративным алгоритмом, помещая параметры, которые обычно передаются рекурсивной функции, в стек. Фактически, вы заменяете программный стек одним своим.

Stack<Object> stack;
stack.push(first_object);
while( !stack.isEmpty() ) {
   // Do something
   my_object = stack.pop();

  // Push other objects on the stack.

}

Примечание: если у вас более одного рекурсивного вызова внутри и вы хотите сохранить порядок вызовов, вы должны добавить их в обратном порядке в стек:

foo(first);
foo(second);

должен быть заменен

stack.push(second);
stack.push(first);

Изменить: статья Стеки и устранение рекурсии (или ссылка Резервное копирование статьи ) идет более подробно на эту тему.

Автор: David Segonds Размещён: 01.10.2008 09:12

2 плюса

13874 Репутация автора

Я только что проголосовал за ответ, предлагающий использовать явный стек, который, я думаю, является правильным решением и имеет общую применимость.

Я имею в виду, что вы можете использовать его для преобразования любой рекурсивной функции в итеративную функцию. Просто проверьте, какие значения сохраняются при рекурсивных вызовах, те, которые должны быть локальными для рекурсивной функции, и замените вызовы циклом, в котором вы поместите их в стек. Когда стек пуст, рекурсивная функция была бы прервана.

Я не могу не сказать, что доказательство того, что каждая рекурсивная функция эквивалентна итерационной функции для другого типа данных, является одним из моих самых дорогих воспоминаний о моих университетских временах. Это был курс (и профессор), который действительно помог мне понять, что такое компьютерное программирование.

Автор: Remo.D Размещён: 09.10.2008 05:40

14 плюса

157 Репутация автора

Даже использование стека не преобразует рекурсивный алгоритм в итеративный. Обычная рекурсия - это рекурсия на основе функций, и если мы используем стек, то она становится рекурсией на основе стека. Но это все еще рекурсия.

Для рекурсивных алгоритмов сложность пространства равна O (N), а сложность времени равна O (N). Для итерационных алгоритмов сложность пространства равна O (1), а сложность времени равна O (N).

Но если мы используем стек вещей с точки зрения сложности остается тем же. Я думаю, что только хвостовая рекурсия может быть преобразована в итерацию.

Автор: ARC Размещён: 06.11.2010 04:27

6 плюса

11931 Репутация автора

Просто убивает время ... Рекурсивная функция

void foo(Node* node)
{
    if(node == NULL)
       return;
    // Do something with node...
    foo(node->left);
    foo(node->right);
}

может быть преобразован в

void foo(Node* node)
{
    if(node == NULL)
       return;

    // Do something with node...

    stack.push(node->right);
    stack.push(node->left);

    while(!stack.empty()) {
         node1 = stack.pop();
         if(node1 == NULL)
            continue;
         // Do something with node1...
         stack.push(node1->right);             
         stack.push(node1->left);
    }

}
Автор: Tae-Sung Shin Размещён: 25.08.2011 05:15

45 плюса

5045 Репутация автора

Кажется, никто не обращался к тому, где рекурсивная функция вызывает себя более одного раза в теле и обрабатывает возврат к определенной точке рекурсии (то есть не является примитивно-рекурсивной). Говорят, что каждая рекурсия может быть превращена в итерацию , поэтому кажется, что это должно быть возможно.

Я только что придумал пример C #, как это сделать. Предположим, у вас есть следующая рекурсивная функция, которая действует как обход по порядку и что AbcTreeNode - это 3-арное дерево с указателями a, b, c.

public static void AbcRecursiveTraversal(this AbcTreeNode x, List<int> list) {
        if (x != null) {
            AbcRecursiveTraversal(x.a, list);
            AbcRecursiveTraversal(x.b, list);
            AbcRecursiveTraversal(x.c, list);
            list.Add(x.key);//finally visit root
        }
}

Итеративное решение:

        int? address = null;
        AbcTreeNode x = null;
        x = root;
        address = A;
        stack.Push(x);
        stack.Push(null)    

        while (stack.Count > 0) {
            bool @return = x == null;

            if (@return == false) {

                switch (address) {
                    case A://   
                        stack.Push(x);
                        stack.Push(B);
                        x = x.a;
                        address = A;
                        break;
                    case B:
                        stack.Push(x);
                        stack.Push(C);
                        x = x.b;
                        address = A;
                        break;
                    case C:
                        stack.Push(x);
                        stack.Push(null);
                        x = x.c;
                        address = A;
                        break;
                    case null:
                        list_iterative.Add(x.key);
                        @return = true;
                        break;
                }

            }


            if (@return == true) {
                address = (int?)stack.Pop();
                x = (AbcTreeNode)stack.Pop();
            }


        }
Автор: T. Webster Размещён: 14.12.2011 09:42

1 плюс

11 Репутация автора

Рекурсия - это не что иное, как процесс вызова одной функции из другой, только этот процесс выполняется путем вызова самой функции. Как мы знаем, когда одна функция вызывает другую функцию, первая функция сохраняет свое состояние (свои переменные), а затем передает управление вызываемой функции. Вызываемая функция может быть вызвана с использованием одного и того же имени переменных. Ex fun1 (a) может вызвать fun2 (a). Когда мы делаем рекурсивный вызов, ничего нового не происходит. Одна функция вызывает себя, передавая один и тот же тип и похожие по имени переменные (но, очевидно, значения, хранящиеся в переменных, различны, только имя остается тем же самым). Но перед каждым вызовом функция сохраняет свое состояние, и этот процесс сохранения продолжается. ЭКОНОМИЯ СДЕЛАНА НА СТЕКЕ.

СЕЙЧАС СТЕК ВХОДИТ В ИГРА.

Поэтому, если вы пишете итеративную программу и каждый раз сохраняете состояние в стеке, а затем извлекаете значения из стека, когда это необходимо, вы успешно преобразовали рекурсивную программу в итеративную!

Доказательство простое и аналитическое.

В рекурсии компьютер поддерживает стек, а в итерационной версии вам придется вручную поддерживать стек.

Подумайте об этом, просто преобразуйте рекурсивную программу поиска в глубину (на графиках) в итерационную программу dfs.

Всего наилучшего!

Автор: Ajay Manas Размещён: 18.05.2012 10:06

5 плюса

347 Репутация автора

Обычно метод, позволяющий избежать переполнения стека для рекурсивных функций, называется методом батута, который широко применяется разработчиками Java.

Однако, для C # есть небольшой вспомогательный метод здесь , что превращает вашу рекурсивную функцию итеративные , не требуя , чтобы изменить логику или сделать код-понятным. C # - такой хороший язык, что с ним можно создавать удивительные вещи.

Он работает, оборачивая части метода вспомогательным методом. Например, следующая рекурсивная функция:

int Sum(int index, int[] array)
{
 //This is the termination condition
 if (int >= array.Length)
 //This is the returning value when termination condition is true
 return 0;

//This is the recursive call
 var sumofrest = Sum(index+1, array);

//This is the work to do with the current item and the
 //result of recursive call
 return array[index]+sumofrest;
}

Превращается в:

int Sum(int[] ar)
{
 return RecursionHelper<int>.CreateSingular(i => i >= ar.Length, i => 0)
 .RecursiveCall((i, rv) => i + 1)
 .Do((i, rv) => ar[i] + rv)
 .Execute(0);
}
Автор: naiem Размещён: 23.05.2012 11:31

13 плюса

688 Репутация автора

Стеки и рекурсии устранение статья отражает идею экспортирования стека на куче, но не обеспечивает простой и повторяемый способ преобразования. Ниже один.

При преобразовании в итеративный код следует помнить, что рекурсивный вызов может происходить из произвольно глубокого блока кода. Это не только параметры, но и точка возврата к логике, которую еще предстоит выполнить, и состояние переменных, которые участвуют в последующих условных выражениях, которые имеют значение. Ниже приведен очень простой способ преобразования в итеративный код с наименьшими изменениями.

Рассмотрим этот рекурсивный код:

struct tnode
{
    tnode(int n) : data(n), left(0), right(0) {}
    tnode *left, *right;
    int data;
};

void insertnode_recur(tnode *node, int num)
{
    if(node->data <= num)
    {
        if(node->right == NULL)
            node->right = new tnode(num);
        else
            insertnode(node->right, num);
    }
    else
    {
        if(node->left == NULL)
            node->left = new tnode(num);
        else
            insertnode(node->left, num);
    }    
}

Итерационный код:

// Identify the stack variables that need to be preserved across stack 
// invocations, that is, across iterations and wrap them in an object
struct stackitem 
{ 
    stackitem(tnode *t, int n) : node(t), num(n), ra(0) {}
    tnode *node; int num;
    int ra; //to point of return
};

void insertnode_iter(tnode *node, int num) 
{
    vector<stackitem> v;
    //pushing a stackitem is equivalent to making a recursive call.
    v.push_back(stackitem(node, num));

    while(v.size()) 
    {
        // taking a modifiable reference to the stack item makes prepending 
        // 'si.' to auto variables in recursive logic suffice
        // e.g., instead of num, replace with si.num.
        stackitem &si = v.back(); 
        switch(si.ra)
        {
        // this jump simulates resuming execution after return from recursive 
        // call 
            case 1: goto ra1;
            case 2: goto ra2;
            default: break;
        } 

        if(si.node->data <= si.num)
        {
            if(si.node->right == NULL)
                si.node->right = new tnode(si.num);
            else
            {
                // replace a recursive call with below statements
                // (a) save return point, 
                // (b) push stack item with new stackitem, 
                // (c) continue statement to make loop pick up and start 
                //    processing new stack item, 
                // (d) a return point label
                // (e) optional semi-colon, if resume point is an end 
                // of a block.

                si.ra=1;
                v.push_back(stackitem(si.node->right, si.num));
                continue; 
ra1:            ;         
            }
        }
        else
        {
            if(si.node->left == NULL)
                si.node->left = new tnode(si.num);
            else
            {
                si.ra=2;                
                v.push_back(stackitem(si.node->left, si.num));
                continue;
ra2:            ;
            }
        }

        v.pop_back();
    }
}

Обратите внимание, что структура кода все еще остается верной рекурсивной логике, а модификации минимальны, что приводит к меньшему количеству ошибок. Для сравнения я пометил изменения с ++ и -. Большинство новых вставленных блоков, кроме v.push_back, являются общими для любой преобразованной итерационной логики

void insertnode_iter(tnode *node, int num) 
{

+++++++++++++++++++++++++

    vector<stackitem> v;
    v.push_back(stackitem(node, num));

    while(v.size())
    {
        stackitem &si = v.back(); 
        switch(si.ra)
        {
            case 1: goto ra1;
            case 2: goto ra2;
            default: break;
        } 

------------------------

        if(si.node->data <= si.num)
        {
            if(si.node->right == NULL)
                si.node->right = new tnode(si.num);
            else
            {

+++++++++++++++++++++++++

                si.ra=1;
                v.push_back(stackitem(si.node->right, si.num));
                continue; 
ra1:            ;    

-------------------------

            }
        }
        else
        {
            if(si.node->left == NULL)
                si.node->left = new tnode(si.num);
            else
            {

+++++++++++++++++++++++++

                si.ra=2;                
                v.push_back(stackitem(si.node->left, si.num));
                continue;
ra2:            ;

-------------------------

            }
        }

+++++++++++++++++++++++++

        v.pop_back();
    }

-------------------------

}
Автор: Chethan Размещён: 29.04.2013 02:43

0 плюса

584 Репутация автора

Грубое описание того, как система берет любую рекурсивную функцию и выполняет ее, используя стек:

Это призвано показать идею без подробностей. Рассмотрим эту функцию, которая выводит узлы графа:

function show(node)
0. if isleaf(node):
1.  print node.name
2. else:
3.  show(node.left)
4.  show(node)
5.  show(node.right)

Например, график: A-> B A-> C show (A) выведет B, A, C

Вызов функции означает сохранение локального состояния и точки продолжения, чтобы вы могли вернуться и затем перейти к функции, которую вы хотите вызвать.

Например, предположим, что шоу (A) начинает работать. Вызов функции в строке 3. show (B) означает - Добавить элемент в стек, что означает «вам нужно продолжить со строки 2 с локальной переменной state node = A» - Перейти к строке 0 с node = B.

Чтобы выполнить код, система выполняет инструкции. Когда происходит вызов функции, система отправляет информацию, необходимую для возврата туда, где она была, запускает код функции, а когда функция завершается, выдает информацию о том, куда ей нужно перейти, чтобы продолжить.

Автор: Rick Giuly Размещён: 02.08.2013 09:08

0 плюса

2868 Репутация автора

Эта ссылка дает некоторое объяснение и предлагает идею сохранения «местоположения», чтобы иметь возможность добраться до точного места между несколькими рекурсивными вызовами:

Однако все эти примеры описывают сценарии, в которых рекурсивный вызов выполняется фиксированное количество раз. Все становится сложнее, когда у вас есть что-то вроде:

function rec(...) {
  for/while loop {
    var x = rec(...)
    // make a side effect involving return value x
  }
}
Автор: eold Размещён: 30.11.2014 04:56

2 плюса

57361 Репутация автора

Вопрос , который был закрыт как дубликат этой имел очень специфическую структуру данных:

введите описание изображения здесь

Узел имел следующую структуру:

typedef struct {
    int32_t type;
    int32_t valueint;
    double  valuedouble;
    struct  cNODE *next;
    struct  cNODE *prev;
    struct  cNODE *child;
} cNODE;

Функция рекурсивного удаления выглядела так:

void cNODE_Delete(cNODE *c) {
    cNODE*next;
    while (c) {
        next=c->next;
        if (c->child) { 
          cNODE_Delete(c->child)
        }
        free(c);
        c=next;
    }
}

В общем, не всегда возможно избежать стека для рекурсивных функций, которые вызывают себя более одного раза (или даже один раз). Однако для этой конкретной структуры это возможно. Идея состоит в том, чтобы объединить все узлы в один список. Это достигается путем помещения текущего узла childв конец списка верхней строки.

void cNODE_Delete (cNODE *c) {
    cNODE *tmp, *last = c;
    while (c) {
        while (last->next) {
            last = last->next;   /* find last */
        }
        if ((tmp = c->child)) {
            c->child = NULL;     /* append child to last */
            last->next = tmp;
            tmp->prev = last;
        }
        tmp = c->next;           /* remove current */
        free(c);
        c = tmp;
    }
}

Этот метод может быть применен к любой связанной с данными структуре, которая может быть преобразована в группу обеспечения доступности баз данных с детерминированным топологическим порядком. Текущие дочерние узлы переставляются так, что последний дочерний элемент принимает всех остальных дочерних элементов. Затем текущий узел может быть удален, и обход может затем перейти к оставшемуся дочернему элементу.

Автор: jxh Размещён: 08.07.2016 10:58

4 плюса

30192 Репутация автора

Думая о вещах, которые действительно нуждаются в стеке:

Если мы рассмотрим шаблон рекурсии как:

if(task can be done directly) {
    return result of doing task directly
} else {
    split task into two or more parts
    solve for each part (possibly by recursing)
    return result constructed by combining these solutions
}

Например, классическая Ханойская башня

if(the number of discs to move is 1) {
    just move it
} else {
    move n-1 discs to the spare peg
    move the remaining disc to the target peg
    move n-1 discs from the spare peg to the target peg, using the current peg as a spare
}

Это может быть преобразовано в цикл, работающий с явным стеком, путем его преобразования:

place seed task on stack
while stack is not empty 
   take a task off the stack
   if(task can be done directly) {
      Do it
   } else {
      Split task into two or more parts
      Place task to consolidate results on stack
      Place each task on stack
   }
}

Для Ханойской Башни это становится:

stack.push(new Task(size, from, to, spare));
while(! stack.isEmpty()) {
    task = stack.pop();
    if(task.size() = 1) {
        just move it
    } else {
        stack.push(new Task(task.size() -1, task.spare(), task,to(), task,from()));
        stack.push(new Task(1, task.from(), task.to(), task.spare()));
        stack.push(new Task(task.size() -1, task.from(), task.spare(), task.to()));
    }
}

Здесь есть большая гибкость в отношении того, как вы определяете свой стек. Вы можете сделать свой стек списком Commandобъектов, которые делают сложные вещи. Или вы можете пойти в противоположном направлении и составить список простых типов (например, «задача» может быть 4 элемента в стеке int, а не один элемент в стеке Task).

Все это означает, что память для стека находится в куче, а не в стеке выполнения Java, но это может быть полезно, поскольку у вас больше контроля над ней.

Автор: slim Размещён: 14.08.2017 03:09

0 плюса

8174 Репутация автора

Существует общий способ преобразования рекурсивного обхода в итератор с помощью ленивого итератора, который объединяет нескольких поставщиков итераторов (лямбда-выражение, которое возвращает итератор). Смотрите мой Преобразование рекурсивного обхода в итератор .

Автор: Dagang Размещён: 14.11.2017 04:45

0 плюса

1929 Репутация автора

Еще один простой и полный пример превращения рекурсивной функции в итеративную с использованием стека.

#include <iostream>
#include <stack>
using namespace std;

int GCD(int a, int b) { return b == 0 ? a : GCD(b, a % b); }

struct Par
{
    int a, b;
    Par() : Par(0, 0) {}
    Par(int _a, int _b) : a(_a), b(_b) {}
};

int GCDIter(int a, int b)
{
    stack<Par> rcstack;

    if (b == 0)
        return a;
    rcstack.push(Par(b, a % b));

    Par p;
    while (!rcstack.empty()) 
    {
        p = rcstack.top();
        rcstack.pop();
        if (p.b == 0)
            continue;
        rcstack.push(Par(p.b, p.a % p.b));
    }

    return p.a;
}

int main()
{
    //cout << GCD(24, 36) << endl;
    cout << GCDIter(81, 36) << endl;

    cin.get();
    return 0;
}
Автор: L_J Размещён: 14.06.2018 12:03
Вопросы из категории :
32x32